¹⁵N CIDNP IN AZO COMPOUND DECOMPOSITION

By Ned A. Porter, John G. Green, and George R. Dubay

Paul M. Gross Chemical Laboratory Duke University Durham, North Carolina 27706

(Received in USA 15 July 1975; received in UK for publication 18 August 1975)

 15 N CIDNP has been used as a mechanistic tool in studies related to diazo coupling¹ and triazene decomposition.² Lipmaa, in particular,² has pointed out the sensitivity of the 15 N nucleus as a mechanistic probe in CIDNP studies. We report here an 15 N CIDNP study of the unsymmetric azo compound <u>1</u>. The interpretation of the 15 N CIDNP spectra reported here is particularly straightforward and provides support for the intermediacy of diazenyl radicals (R-N=N·) during decomposition of unsymmetric azo compounds.

<u>trans-l</u> can be readily obtained labelled with either 97% ¹⁵N at the nitrogen attached to the phenyl group (N_p) or 50% ¹⁵N at the nitrogen attached to the cymyl group (N_c) .³ <u>trans-l</u> was photoequilibrated at -80° and <u>cis-l</u> was isolated as previously reported.⁴ ¹⁵N spectra were obtained on a Bruker HFX 10 pulse spectrometer. Chemical shifts⁵ in ppm downfield from ¹⁵NO₃⁻ were <u>trans-l</u>; N_p = 132, N_c = 170; <u>cis-l</u>, N_p = 161, N_c = 194.

In the figure is presented the undecoupled ¹⁵N CIDNP spectrum obtained during decomposition (benzene solvent) of <u>cis-l</u> labelled at either N_p or N_c. For the N_p labelled compound (part a) strong enhanced absorption (A) is observed for N_p of <u>cis-l</u> and <u>trans-l</u>. In addition, a strong emission (E) is observed 66.5 ppm upfield from NO_3^- . The ¹⁵N CIDNP spectrum for the N_c labelled azo compound is presented in Fig 1 (b). Enhanced absorption is observed for signals due to N_c in <u>cis</u> and <u>trans-1</u>. In addition, emission 66.5 ppm upfield from ¹⁵NO₃⁻ is also observed.

The ${}^{15}N$ CIDNP spectrum from <u>cis-l</u> is easier to detect than corresponding ${}^{1}H$ or ${}^{13}C$ spectra.⁶ ${}^{1}H$ and ${}^{13}C$ spectra from <u>cis-l</u> must be obtained near 40° where decomposition is fast.⁴ Easily detectable ${}^{15}N$ CIDNP spectra can be obtained at temperatures below 20° where the half life of <u>cis-l</u> is greater than 30 min.. ${}^{15}N$ would thus appear to be the nucleus of choice in terms of sensitivity, for CIDNP studies in azo decompositions.

Figure. ¹⁵N CIDNP from (a) N_p and (b) N_c labelled <u>cis-</u> $\frac{1}{2}$

The 15 N CIDNP spectra obtained from <u>cis-l</u> decomposition are consistent with the mechanism outlined in the Scheme, where * indicates products which are polarized. On the basis of this Scheme, several mechanistic conclusions can be drawn.

SCHEME

(1) Since N_p and N_c labelled <u>cis-</u> λ both give rise to enhanced absorption CIDNP signals in <u>cis</u> and <u>trans-</u> λ , application of the CKO rules⁷ suggests that the hyperfine coupling constants of N_p and N_c in the phenyldiazenyl radical must both be positive.⁸

(2) Since N_p labelled <u>cis-l</u> only gives rise to N_p CIDNP signals, no significant scrambling of N_p and N_c occurs in Ph-N₂.⁹ Rearrangement similar to that observed in

phenyldiazonium salt¹⁰ decompositions is apparently not competitive with other pathways available to the radical.

(3) The E signal observed 66.5 ppm ± 1.0 ppm upfield from ${}^{15}NO_3^{-}$ must be due to molecular nitrogen, ${}^{29}N_2$, formed by β -scission of escape phenyldiazenyl radicals. The fact that both N_p and N_c labelled compounds give rise to this emission signal requires that the species responsible be an escape product that is symmetric with respect to N_p and N_c. The chemical shift of N₂ has been the subject of some controversy. N₂ signals 14 and 70 ppm upfield from NO₃⁻ have been reported. 11,12</sup> The latter claim has recently been supported by Roberts et. al.¹³ who report a chemical shift for liquid ${}^{29}N_2$ 67.6 ±1.5 ppm upfield from ${}^{15}NO_3^{-}$. Our value for the chemical shift of ${}^{29}N_2$ at 35° is thus consistent with values reported earlier for liquid N₂.

We should point out that examination of the published ¹⁵N CIDNP spectra of other workers reveals signals which may be due to polarized ²⁹N₂. In particular, published ¹⁵N CIDNP spectra by Bubnov <u>et. al.</u>¹ show emission at about 65 ppm¹⁴ which most likely is due to ²⁹N₂. Application of the CKO rules suggests that ²⁹N₂ should be observed in emission in this system. Finally, we note that Lipmaa² also observes an emission at 65 ppm in his studies of triazenes. Although he does not assign this emission to ²⁹N₂, the CKO rules suggest here also that, if formed from triazenes, ²⁹N₂ would be observed in emission.

Acknowledgments: We thank the National Science Foundation for support of this research.

REFERENCES AND NOTES

- N. N. Bubnov, K. A. Bilevitch, L. A. Poljakova, and O. Yu. Okhlobystin, J. <u>Chem.</u> <u>Soc. Chem. Commun., 1972, pg. 1058.</u>
- 2. E. Lippmaa, T. Saluvere, T. Pehk, and A. Olivson, Org. Mag. Res., 5, 429(1972).
- Details of the synthesis have been presented elsewhere. N. A. Porter and J. G. Green, <u>Tetrahedron Letters</u>, in press.
- (a) N. A. Porter, L. J. Marnett, C. H. Lochmüller, G. L. Closs, and M. Shobataki, J. <u>Amer. Chem. Soc.</u>, <u>94</u>, 3664(1972).
 - (b) N. A. Porter and L. J. Marnett, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 4361(1973).
- 5. Chemical shifts are referred to 5.8 M 15 NH₄ 15 NO₇ in 2 M HNO₇.
- 6. ¹³C CIDNP of <u>cis-1</u> will be presented elsewhere.
- 7. The following parameters were assumed: g(PhN₂·) < g(Ph(CH₃)C·). Sign of hyperfine C_p in PhN₂· +; C_c in Ph(CH₃)₂C +; C_β in Ph(CH₃)₂C· -. N_p and N_c in Ph-N₂· , + [See ref. 8 and J. Pople, D. Beveridge, P. Dodosh, J. Amer. Chem. Soc., 90, 4201(1968).
- K. G. Seifert and F. Gerhart, <u>Tet</u>. <u>Letters</u> #10, 829(1974). A double ¹⁵N label study is in progress which may give information about the relative hyperfine values of N_p and N_c.
- No scrambling of the nitrogen label is found in careful analysis of <u>trans-l</u> recovered after partial photolysis. Reference 3.
- 10. (a) E. S. Lewis and J. M. Insole, <u>J. Amer. Chem. Soc.</u>, <u>86</u>, 32,34(1964).
 (b) C. G. Swain, J. E. Sheats, and K. G. Harbison, <u>J. Amer. Chem. Soc.</u>, <u>97</u>, 796(1975).
- 11. B. E. Holder and M. P. Klein, J. Chem. Phys., 23, 1956(1955).
- 12. J. E. Kent and E. L. Wagner, J. Chem. Phys., 44, 3530(1966).
- C. H. Bradley, G. E. Hawkes, E. W. Randall, J. D. Roberts, <u>J. Amer. Chem. Soc.</u>, 97, 1958(1975).
- 14. N₂ would be the escape product from a phenyldiazenyl-phenoxy radical pair.